Comparison of Respirable Particulate (PM$_4$) Measurements from Direct-Reading Photometric Instruments and a Gravimetric Sampling Method

*B. Language, Prof. S.J. Piketh, Mr. R.P. Burger

North West University
School of Geography & Environmental Management
Private Bag X6001
Potchefstroom
2520
South Africa
Introduction

Problem Statement

Objectives

Methodology

Results

Limitation

Conclusion

Questions

<table>
<thead>
<tr>
<th>Source</th>
<th>Cal. Factor</th>
<th>Environment</th>
<th>Source</th>
<th>Cal. Factor</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Braniš & Hovorka</td>
<td>0.43</td>
<td>Ambient PM$_{2.5}$</td>
<td>Jiang et al. (2011)</td>
<td>0.29</td>
<td>Indoor</td>
</tr>
<tr>
<td>(2005)</td>
<td>0.47</td>
<td>Ambient PM$_{2.5}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.26</td>
<td>Ambient PM$_{2.5}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.30</td>
<td>Ambient PM$_{2.5}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>Ambient PM$_{2.5}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.30</td>
<td>Ambient PM$_{10}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.32</td>
<td>Ambient PM$_{10}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.40</td>
<td>Ambient PM$_{10}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.31</td>
<td>Ambient PM$_{10}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.79</td>
<td>Ambient PM$_{10}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.52</td>
<td>Ambient PM$_{10}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chung et al. (2001)</td>
<td>0.33</td>
<td>Ambient PM$_{2.5}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heal et al. (2000)</td>
<td>0.45</td>
<td>Ambient PM$_{10}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kingsham et al. (2006)</td>
<td>0.37</td>
<td>PM$_{10}$ Wood Smoke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McNamara et al. (2011)</td>
<td>0.46</td>
<td>Lab Wood Stove PM$_{2.5}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.63</td>
<td>Indoor PM$_{2.5}$ During Forest Fires</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wallace et al. (2011)</td>
<td>0.59</td>
<td>Indoor PM$_{2.5}$ During Forest Fires</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yanosky et al. (2002)</td>
<td>0.38</td>
<td>Ambient PM$_{2.5}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.45</td>
<td>Ambient Air</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.38</td>
<td>Ambient PM$_{10}$ Wood Smoke</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Adapted from TSI Inc., 2013)

NLA Test & Measurement Conference 2015
Kwadela, Mpumalanga

Key:
- Kwadela Built-up Area
- Railway Line
- N17 National Route
- Secondary Route
- Indoor Sampling Sites
- Gravimetric Sampling Sites

South Africa

Lab: Pre-Sampling

Lab: Post-Sampling

Data Analysis

Introduction

Problem Statement

Objectives

Methodology

Results

Limitation

Conclusion

Questions

NLA Test & Measurement Conference 2015
Introduction

Problem Statement

Objectives

Methodology

Results

Limitation

Conclusion

Questions

Experimental Design

Lab: Pre-Sampling

Field Sampling

Lab: Post-Sampling

Data Analysis
Introduction

Problem Statement

Objectives

Methodology

Results

Limitation

Conclusion

Questions

Experimental Design

Lab: Pre-Sampling

Field Sampling

Lab: Post-Sampling

Data Analysis

DustTrak II Model 8530

SidePak AM510

GilAir 3 Pump

Dorr-Oliver Cyclone

37mm Cassette
Photometric Calibration Factor

\[
\text{Gravimetric Conc. (Cur. Cal. Fac.)} = \frac{\text{Instrument Conc.}}{\text{Lab: Pre-Sampling}}
\]

Introduction
Problem Statement
Objectives
Methodology
Results
Limitation
Conclusion
Questions
Experimental Design
Lab: Pre-Sampling
Field Sampling
Lab: Post-Sampling
Data Analysis
• DustTrak II Model 8530
• 0.14 ± SE (0.09, 0.15)
• Winter 2013: 1800 µg/m³ – 252 µg/m³
• SidePak AM510
 • **0.24 ± SE (0.16, 0.30)**
 • **Winter 2013: 500 µg/m³ – 120 µg/m³**
Thank you