Monitoring of parasitic protozoans in effluent of wastewater treatment works

Presenter:
Thandubuhle Gonose
CONTENTS

✓ Introduction

✓ Project
 o Aim and objectives
 o Methodology
 o Results (6 months)
 o Conclusion
INTRODUCTION

☑ Availability safe drinking water quality is important

☑ Deterioration of water quality dams, lakes and rivers

☑ Water Pollution – industries, urbanisation and human

☑ Wastewater treatment plants - major polluter of water sources
 - i.e. 1st barrier in multi-barrier system of ensuring good quality drinking water
THE ROLE AND IMPACT OF WWTP ON WATER QUALITY

✓ WWTP - preventing pollution of water sources
 o Inactivate & remove pollutants in wastewater
 □ Plant nutrients; Pharmaceutical; Bacteria; Viruses & Protozoan parasites

✓ WWTP – ineffective pollution prevention
 o Urbanization and associated activities – increase in wastewater – pressure in WWTP
 o Poor management of WWTP

✓ Discharging effluent not complying to regulations
 o Chemical & microbiological
POSSIBLE POLLUTANTS IN WASTEWATER

✓ Plant nutrients
 - Phosphate,
 - Nitrates & Nitrites

✓ Emerging organics contaminants
 - Pharmaceuticals

✓ Bacteria
 - *E. coli*, *Salmonella* & *Vibrio cholera*

✓ Viruses
 - Rotavirus

✓ Protozoan parasite
 - *Entamoeba histolytica*, *Cryptosporidium* & *Giardia*
PROTOZOAN PARASITES

✓ *Cryptosporidium* and *Giardia* are enteric protozoans parasites:
 o Self-limiting illness in immuno-competent
 o Serious to fatal in immuno-compromised
 o Infect wide range of animals & also man
 o Transmitted through
 q Human to human
 v Unhygienic actions
 q Water & food
 q Recreational
 q Feecal-oral route
LIFE CYCLE OF CRYPTOSPORIDIUM

1. Thick-walled oocyst (sporulated) exits host
2. Contamination of water and food with oocysts.
3. Thick-walled oocyst ingested by host
 - Recreational water
 - Drinking water
CRYPTOSPORIDIOUIM AND GIARDIA

Importance to water industry:

- Caused a number of outbreaks - deaths
- Can escape coagulation/filtration processes and remain viable due to their small size
- Resistance to conventional chlorine based disinfectants
- Highly resistant to environmental conditions and can survive in water for longer periods
- Prominent protozoan parasites in wastewater
Methodology for the detection of *Cryptosporidium* and *Giardia* (oo)cysts in water

In 2001, USEPA 1623 & 1622: Universally approved methods

- In 2005, 1622 adapted for wastewater (1693)
- In 2012, 1623.1 new revision with operational changes
 - Concentration – Filtration
 - Separation – Immuno-magnetic separation
 - Enumeration – fluorescein stains
CHALLENGES IN DETECTION METHODS

Wastewater samples

Method limitation

- Immuno-magnetic separation kit inhibition
- Turbidity
- pH sensitive
- Fats
- Unknown substances
- Identification challenges
- False positive (experience)
AIM AND OBJECTIVES

• Asses the method (USEPA 1623.1) performance/recovery in wastewater effluent

• Monitor physical and microbiological quality of wastewater effluent from the two WWTP

• Determine the removal efficiency of Cryptosporidium and Giardia by two WWTP
WASTEWATER QUALITY MONITORING

- **Why**: The reason for monitoring wastewater quality.
- **What**: The aspects of wastewater that are monitored.
- **When**: The timing of the monitoring.
- **Where**: The location of the monitoring.
- **How**: The methods used for monitoring.
WASTEWATER QUALITY MONITORING

What

- Microbiological determinants
 - Cryptosporidium oocysts
 - Giardia cysts
 - Escherichia coli

- Physical determinants
 - Turbidity
WASTEWATER TREATMENT PLANT 1

- Capacity 36 ML/day (40 ML/day)
- Activated sludge system
- Treats wastewater from Vereeniging, Sharpville, Kwaggastroom
- Final effluent discharged to Vaal River
- Sample 2 x month (6 months)
WASTEWATER TREATMENT PLANT 2

✓ Carrying capacity of 2.1 ML/day
✓ Trickling filters
✓ Treats water from Deneysville and Refengkgotso township
✓ Final effluent discharged to Vaal Dam
✓ Sample 2x a month (6 months)
METHODOLOGY

Sample collection
Turbidity measurement
Escherichia coli detection and enumeration
USEPA 1623.1 method
- Sample filtration & elution
- Sample concentration & separation
- *(Oo)*cyst detection & enumeration
SAMPLE COLLECTION

- Rod sampling method
- Sampling using a beaker
- Sampling using an attached beaker
- On-site measurements using YSI
USEPA 1623.1 METHOD: SAMPLE CONCENTRATION

Matrix

Filtration

Elution

Elution

Elution
USEPA 1623.1 METHOD: SAMPLE CONCENTRATION

CENTRIFUGATION → SUPERNATANT ASPIRATION → PELLET
USEPA 1623.1 METHOD: SAMPLE SEPARATION

Giardia

Cryptosporidium

CAPTURE

Giardia antibodies paramagnetic beads

Cryptosporidium antibodies paramagnetic beads

ASSOCIATION

Magnet
USEPA 1623.1 METHOD: SAMPLE SEPARATION

DISSOCIATION: HCL
USEPA 1623.1 METHOD:
DETECTION AND ENUMERATION

Cryptosporidium and *Giardia* FITC-mAb stain

❖ Florescence
❖ Size
USEPA 1623.1 METHOD: DETECTION AND ENUMERATION

Cryptosporidium and _Giardia_ DAPI stain

- Confirmatory stain – identification of nuclei (viability)
METHOD CHALLENGES EXPERIENCED IN THE PROJECT

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>• pH very high especially in water samples with algae</td>
<td>• pH measured before processing and lowered if necessary</td>
</tr>
<tr>
<td>• IMS beads not attaching to the magnet. Especially in wastewater with high scum and fat content.</td>
<td>• Use kaolin which helps in remove particles bound to cell epitopes.</td>
</tr>
<tr>
<td>• High turbidity in the samples that clogs the filters</td>
<td>• Use not filter samples with turbidity more than 500 NTU</td>
</tr>
</tbody>
</table>
RESULTS

Mean recovery = G (40) C (35)

Cryptosporidium and *Giardia* counts in WWTP 2 effluent

Counts/10L

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week...

Effluent-Cryptosporidium Effluent-Giardia
RESULTS

Cryptosporidium and Giardia counts in WWTP 1 effluent

Mean recovery = G (35)
C (30)
Results

E. coli counts in WWTP 1 & 2 WWTP effluent

General limits = 1000/100ml
Specific limit = 0/100ml

- E. coli- Deneysville WWTP effluent
- E. coli- Leeuwkuil WWTP effluent
CONCLUSION

✓ Cryptosporidium and Giardia need to be monitored in WWTP treated effluent
 - Prevalence in the population
 - WWTP can be potential source of contamination of water sources

✓ Monitoring/ analysis of effluent and estimation of removal efficiency
 - Useful in providing information on potential contamination sources
 - Cryptosporidium and Giardia should be included in permit requirements